Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Cells ; 29(4): 316-327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385597

RESUMO

Dectin-1 is a well-characterized C-type lectin receptor involved in anti-fungal immunity through the recognition of polysaccharides; however, molecular mechanisms and outcomes initiated through self-recognition have not been fully understood. Here, we purified a water-soluble fraction from mouse liver that acts as a Dectin-1 agonist. To address the physiological relevance of this recognition, we utilized sterile liver inflammation models. The CCl4-induced hepatitis model showed that Dectin-1 deficiency led to reduced inflammation through decreased inflammatory cell infiltration and lower pro-inflammatory cytokine levels. Moreover, in a NASH model induced by streptozotocin and a high-fat diet, hepatic inflammation and fibrosis were ameliorated in Dectin-1-deficient mice. The Dectin-1 agonist activity was increased in the water-soluble fraction from NASH mice, suggesting a potential pathogenic cycle between Dectin-1 activation and hepatitis progression. In vivo administration of the fraction into mice induced hepatic inflammation. These results highlight a role of self-recognition through Dectin-1 that triggers hepatic innate immune responses and contributes to the exacerbation of inflammation in pathogenic settings. Thus, the blockade of this axis may provide a therapeutic option for liver inflammatory diseases.


Assuntos
Hepatite , Lectinas Tipo C , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Água
2.
J Innate Immun ; 15(1): 397-411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36657412

RESUMO

Aspergillus fumigatus is a ubiquitous, yet potentially pathogenic, mold. The immune system employs innate receptors, such as dectin-1, to recognize fungal pathogens, but the immunological networks that afford protection are poorly explored. Here, we investigated the role of dectin-1 in anti-A. fumigatus response in an experimental model of acute invasive aspergillosis. Mice lacking dectin-1 presented enhanced signs of inflammation, with increased production of inflammatory cytokines and neutrophil infiltration, quickly succumbing to the infection. Curiously, resistance did not require T/B lymphocytes or IL-17. Instead, the main effector function of dectin-1 was the preservation of the NK cell population in the kidneys by the provision of the cytokine IL-15. While the depletion of NK cells impaired host defense in wild-type mice, IL-15 administration restored antifungal responses in dectin-1-deficient mice. Our results uncover a new effector mechanism for dectin-1 in anti-Aspergillus defense, adding an alternative approach to understand the pathophysiology of this infection.


Assuntos
Aspergilose , Aspergillus fumigatus , Animais , Camundongos , Interleucina-15 , Lectinas Tipo C/metabolismo , Citocinas , Células Matadoras Naturais
3.
Tuberculosis (Edinb) ; 138: 102294, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542980

RESUMO

Mycobacteria often cause chronic infection. To establish persistence in the host, mycobacteria need to evade host immune responses. However, the molecular mechanisms underlying the evasion strategy are not fully understood. Here, we demonstrate that mycobacterial cell wall lipids trigger an inhibitory receptor to suppress host immune responses. Mycolic acids are major cell wall components and are essential for survival of mycobacteria. By screening inhibitory receptors that react with mycobacterial lipids, we found that mycolic acids from various mycobacterial species bind to mouse Clec12A, and more potently to human Clec12A. Clec12A is a conserved inhibitory C-type lectin receptor containing immunoreceptor tyrosine-based inhibitory motif (ITIM). Innate immune responses, such as MCP-1 production, and PPD-specific recall T cell responses were augmented in Clec12A-deficient mice after infection. In contrast, human Clec12A transgenic mice were susceptible to infection with M. tuberculosis. These results suggest that mycobacteria dampen host immune responses by hijacking an inhibitory host receptor through their specific and essential lipids, mycolic acids. The blockade of this interaction might provide a therapeutic option for the treatment or prevention of mycobacterial infection.


Assuntos
Infecções por Mycobacterium , Mycobacterium tuberculosis , Animais , Humanos , Camundongos , Parede Celular/metabolismo , Imunidade Inata , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ácidos Micólicos/metabolismo , Receptores Mitogênicos/metabolismo
4.
Int Immunol ; 33(12): 847-851, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34599808

RESUMO

Our bodies are continuously assaulted by infection and tissue damage; most of these injurious insults are primarily sensed by immune receptors to maintain tissue homeostasis. Although immune recognition of proteins or nucleic acids has been well characterized, the molecular mechanisms by which immune receptors discriminate lipids to elicit suitable immune responses remain elusive. Recent studies have demonstrated that the C-type lectin receptor family functions as immune sensors for adjuvant lipids derived from pathogens and damaged tissues, thereby promoting innate/acquired immunity. In this review, we will discuss how these receptors recognize lipid components to initiate appropriate, but sometimes deleterious, immune responses against environmental stimuli. We will also discuss an aspect of inhibitory C-type lectin receptors; their ligands might reflect normal self which silences the immune response regarded as "silence"-associated molecular patterns or may be associated with escape strategies of pathogens as "evasion"-associated molecular patterns.


Assuntos
Imunidade Inata/imunologia , Lectinas Tipo C/imunologia , Animais , Humanos , Lipídeos/imunologia
5.
Org Biomol Chem ; 18(19): 3659-3663, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32356529

RESUMO

Ac1PIM1 is a potential biosynthetic intermediate for phosphatidylinositol mannosides (PIMs) from Mycobacterium tuberculosis. We achieved the first synthesis of Ac1PIM1 by utilizing an allyl-type protecting group strategy and regioselective phosphorylation of inositol. A very potent agonist of an innate immune receptor DCAR, which is better than previously known agonists, is demonstrated.


Assuntos
Imunomodulação/efeitos dos fármacos , Lectinas Tipo C/agonistas , Mycobacterium tuberculosis/química , Fosfatidilinositóis/farmacologia , Receptores Imunológicos/agonistas , Animais , Citocinas/biossíntese , Lectinas Tipo C/imunologia , Camundongos , Mycobacterium tuberculosis/imunologia , Fosfatidilinositóis/síntese química , Fosfatidilinositóis/química , Fosforilação , Células RAW 264.7 , Receptores Imunológicos/imunologia
6.
Immunity ; 45(6): 1245-1257, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27887882

RESUMO

Phosphatidyl-inositol mannosides (PIM) are glycolipids unique to mycobacteria and other related bacteria that stimulate host immune responses and are implicated in mycobacteria pathogenicity. Here, we found that the FcRγ-coupled C-type lectin receptor DCAR (dendritic cell immunoactivating receptor; gene symbol Clec4b1) is a direct receptor for PIM. Mycobacteria activated reporter cells expressing DCAR, and delipidation of mycobacteria abolished this activity. Acylated PIMs purified from mycobacteria were identified as ligands for DCAR. DCAR was predominantly expressed in small peritoneal macrophages and monocyte-derived inflammatory cells in lungs and spleen. These cells produced monocyte chemoattractant protein-1 (MCP-1) upon PIM treatment, and absence of DCAR or FcRγ abrogated MCP-1 production. Upon mycobacterial infection, Clec4b1-deficient mice showed reduced numbers of monocyte-derived inflammatory cells at the infection site, impaired IFNγ production by T cells, and an increased bacterial load. Thus, DCAR is a critical receptor for PIM that functions to promote T cell responses against mycobacteria.


Assuntos
Proteínas de Bactérias/imunologia , Lectinas Tipo C/imunologia , Fosfatidilinositóis/imunologia , Receptores Imunológicos/imunologia , Células Th1/imunologia , Animais , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium/imunologia , Infecções por Mycobacterium/imunologia
7.
Chem Commun (Camb) ; 51(81): 15027-30, 2015 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-26310657

RESUMO

Mycobacterium tuberculosis H37Ra produces a range of immunogenic ß-gentiobiosyl diacylglycerides. We report the total synthesis of several candidate structures and show that these compounds signal weakly through mouse, but not human, Mincle. Structure-activity relationships reveal a striking dependence upon acyl chain length for gentiobiosyl diacylglyceride signalling through Mincle. Significantly, a truncated ß-glucosyl diglyceride was shown to provide potent signalling through both human and mouse Mincle and could activate murine bone marrow derived dendritic cells.


Assuntos
Diglicerídeos/síntese química , Diglicerídeos/farmacologia , Mycobacterium tuberculosis/química , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Diglicerídeos/química , Humanos , Camundongos , Estrutura Molecular , Mycobacterium tuberculosis/isolamento & purificação , Relação Estrutura-Atividade
8.
Chem Commun (Camb) ; 51(24): 5100-3, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25714652

RESUMO

An enantioselective synthesis of (+)-corynomycolic acid, and its elaboration to esters of trehalose, glucose and glycerol, is described. Trehalose dicorynomycolate and trehalose monocorynomycolate activate human and mouse Mincle as effectively as trehalose dicorynomycolate (cord factor). Glucose monomycolate is revealed to be a potent activator of both mouse and human Mincle. Glycerol monocorynomycolate signals through human Mincle, with the activity predominantly residing in the 2'S-isomer.


Assuntos
Glicolipídeos/química , Glicolipídeos/farmacologia , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Ácidos Micólicos/química , Receptores Imunológicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Camundongos , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA